Neutron diffraction experiments were carried out by a diffractometer installed at the JRR-3 reactor of JAERI (10 MW, maximum thermal flux: $2 \times 10^{13} \mathrm{n} . \mathrm{cm}^{-2} \mathrm{sec}^{-1}$), with a Cu (111) transmission-type monochromator which reflects $0.98 \AA$ neutrons. The usual $\theta-2 \theta$ scanning was made along rekhas [110] and [110], over 2θ ranging from 18° to 68°, at room temperature and at $120^{\circ} \mathrm{C}$, i.e. below and above the transition point $\left(75^{\circ} \mathrm{C}\right)$ which was observed and discussed by Naito, Ishii, Hamaguchi \& Oshima (1967). Integrated intensities of the fundamental reflexions $880 ; 16,16,0,800,16,0,0$, and $24,0,0$ observed at room temperature agreed well with those given by Willis (1964) for $\mathrm{U}_{4} \mathrm{O}_{9}$ single crystal.

Fig. 1(a) and (b) reproduces parts of the diffractometer records along the [110] rekha, at room temperature and at $120^{\circ} \mathrm{C}$, where the peaks are indexed on the basis of the $4 \times a_{0}$ superlattice. In both of the figures small but distinct peaks are seen in between adjacent $4 \times a_{0}$ superlattice peaks. Since they can be indexed by half-integers, the structure of $\mathrm{U}_{4} \mathrm{O}_{9}$ is very probably with the $8 \times a_{0}$ superlattice both above and below the transition point. This result is in contrast with the conclusion accepted at present, that there exists only a $4 \times a_{0}$ superlattice in the structure of $\mathrm{U}_{4} \mathrm{O}_{9}$
(Belbeoch, Piekarski \& Perio, 1961). Another $8 \times a_{0}$ superstructure peak, viz. $14 \cdot 5,14 \cdot 5,0$, is also observed on the [110] rekha. Similar extra peaks are seen on the [110] diffractometer record as well, suggesting that the $8 \times a_{0}$ superlattice holds the cubic symmetry of the structure.

All of the observed $8 \times a_{0}$ superstructure reflexions showed the same behavior as most of the $4 \times a_{0}$ superstructure reflexions with respect to the phase transition (Naito et al., 1967), i.e. their integrated intensities are stronger for the high-temperature phase than for the low-temperature phase.

Further analysis of the superstructure is in progress.

References

Belbeoch, B., Laredo, E. \& Perio, P. (1964). J. Nuclear Mat. 13, 100.
Belbeoch, B., Piekarski, C. \& Perio, P. (1961). Acta Cryst. 14, 837.
Naito, K., IshiI, T., Hamaguchi, Y. \& Oshima, K. (1967). Solid State Comm. 5, 349.
Willis, B. T. M. (1964). J. Physique, 25, 431.

Acta Cryst. (1968). B24, 1394
Unit cell and space group of 4,8-dichloro-2,6-diethylbenzo(1-2,4-5)bisoxazole. By L.G.Roldan and M. H. Litt,* Allied Chemical Corporation, Central Research Laboratory, Morristown, New Jersey 07960, U.S.A.
(Received 5 March 1968)
The cell constants for 4,8-dichloro-2,6-diethylbenzo(1-2,4-5)bisoxazole are $a=5.451 \pm 0.004, b=13.398$ $\pm 0 \cdot 006, c=8 \cdot 790 \pm 0 \cdot 004 \AA ; \beta=103 \cdot 1 \pm 0 \cdot 1^{\circ}$. The crystals belong to the space group $P 2_{1} / a$. There are two molecules per unit cell.

In the course of the investigation of the synthesis of some dichlorobisoxazoles the 2,6-diethyl substituted compound was prepared. Details of its synthesis and postulated molecular structure have been published (Litt \& Idelson, 1966).

The unit cell and space group have been found to be consistent with the postulated structure:

Single crystals were grown by recrystallization from benzene. They were found to be monoclinic and platelike, bounded principally by $\{110\}$. The cell constants determined from the zero layer of rotating crystal photographs

[^0]about the a and c axes with $\mathrm{Cu} K \alpha$ radiation were refined by Bradley \& Jay's (1932) extrapolation method. They are:
\[

$$
\begin{gathered}
a=5 \cdot 451 \pm 0.004, b=13 \cdot 398 \pm 0 \cdot 006, c=8 \cdot 790 \pm 0.004 \AA ; \\
\beta=103 \cdot 1 \pm 0 \cdot 1^{\circ} .
\end{gathered}
$$
\]

The calculated density based on two molecules per unit cell is 1.545 g.cm ${ }^{-3}$, which is in agreement with an observed density of $1.55 \mathrm{~g} . \mathrm{cm}^{-3}$. Precession photographs about the c axis and the rotation photographs showed the $h 0 l$ reflections to be absent when $h=2 n+1$ and the $0 k 0$ reflecticas to be absent when $k=2 n+1$; there were no other systematic extinctions; the space group was thereby established as $P 2_{1} / a$. Since this space group shows four general positions in the unit cell, each molecule must lie with its center on a center of symmetry.

It may be noticed that a disordered structure with respect to N and O is possible because of the nearly equal electron density of these atoms and the symmetrical positions of the two heavier chlorine atoms.

No further work on this compound is planned.

References

Bradley, A. J. \& Jay, A. H. (1932). Proc. Phys. Soc. 44, 563.

Litt, M. H. \& Idelson, A. (1966). U.S. Patent 3,268,545.

[^0]: * Present address: Division of Polymer Science, Case Western Reserve University, University Circle, Cleveland, Ohio 44106, U.S.A.

